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a b s t r a c t

Parents compete for high-quality education for their children by enrolling them in good
schools. However, in a Chinese mega-city like Beijing, three factors jointly lead to the spatial
separation between schools and homes: the centralized public goods provision mechanism,
the historical dependency in school location, and the constrained supply of housing in
downtown. Without an adequate number of school buses, this spatial separation of schools
and homes triggers the numerous long-distance driving-to-school trips by private vehicle
during workday morning rush hours in Beijing. We use the start and end dates of ‘‘school
holiday” as exogenous repeated shocks to the aggregate traffic congestion, and employ
the two-stage least squares (2SLS) regression approach to examine the congestion and pol-
lution consequences of such driving-to-school trips in Beijing. We find that, all else being
equal, workdays during school holidays have a traffic congestion index 20% lower than that
of non-school-holiday workdays. Such a sharp reduction in congestion leads to a significant
decrease in PM10 concentration. Policymakers should lower such ‘‘extra” congestion and
environmental costs via optimizing the spatial balance between school supply and demand.

! 2016 Elsevier Ltd. All rights reserved.

1. Introduction

During the past decades, rapid growth of car ownership and usage, combined with lagged transportation infrastructure
supply, have led to serious traffic congestion in China’s large cities. According to the data released by the Beijing Transporta-
tion Research Center, the number of private cars grew from 1.34 million in 2005 to 3.57 million in 2010, the one-way com-
muting time for Beijing residents also increased from 37 min to 44 min in the same period (Meng, 2011). A rough estimation
shows that fifteen Chinese cities at the top of the traffic congestion list suffer totally 1 billion yuan loss every day in terms of
the travel time wasted on roads.1 As another social cost of rapid motorization, vehicle exhaust emission makes a significant
contribution to air pollution in Chinese megacities.2 In Beijing, it accounts for 31.1% of PM2.5 emissions from local sources,
and this proportion is larger than any other source.3 Therefore, how to effectively manage the traffic congestion and air
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pollution consequences of private car transportation has become an enormous challenge for those cities (Chen et al., 2013;
Zheng and Kahn, 2013).

Traffic congestion and related pollution issues are closely related to urban land use patterns. Commuting trips between
home and workplace as well as related jobs-housing balance issue have been widely investigated. However, in recent years,
transportation surveys in developed cities have documented the rising importance of non-commuting trips. Like many large
cities in the US, Beijing has also experienced a declining proportion of commuting trips and it was already below 40% by
2010.4 Within the various non-commuting trips in large Chinese cities, many are driving-to-school trips by urban residents.
During the rapid expansion of the cities, many people have moved out of downtown, where the traditional quality schools
are still located. The institutional arrangements have caused the spatial separation between where households live and where
their children attend schools. In the absence of school bus system, this spatial separation generates a considerable amount of
school trips via decentralized private driving in Chinese cities. Based on the 4th Beijing Comprehensive Transportation Survey
(in 2010), our rough calculation of aggregate effect shows that driving-to-school trips account for about 15% of all the trips in
morning rush hours on a typical workday.5 This can explain the sharp jump in the city’s traffic congestion level on the first
school day after the school holiday, and a sharp drop on the first school holiday.6 For example, Yang et al. (2016) calculates that
the average speed of two selected routes on school days was 29.6% higher than that during summer school holidays in 2013.

Taking Beijing as a case, this paper aims to answer the following empirical question: How do drive-to-school trips,
regarded as the result of spatial separation between schools and households, significantly contribute to the aggregate traffic
congestion in Beijing’s urban road network, and further aggravate air pollution? To answer this question, we take advantage
of the start/end dates of school holidays as repeated exogenous shocks to extract the congestion effect of driving-to-school
trips in the morning rush hours. Two-stage least squares (2SLS) regression approach is employed to further investigate if the
‘‘chain” channel in ‘‘driving-to-school trips– congestion – pollution” does exist.

The remainder is organized as follows. Section 2 reviews some relevant previous literature. Section 3 introduces the insti-
tutional background for the spatial separation of schools and households and the popularity of driving-to-school trips in Bei-
jing. Section 4 presents data and the empirical strategy we use in this study. Sections 5 presents regression results of the
two-stage least squares regressions and robustness checks. Section 6 concludes.

2. Literature review

Numerous urban and transportation studies have suggested the importance of urban spatial structure for travel behav-
iors. As the dominant model of urban spatial structure, the monocentric city model of Alonso (1974), Mills (1967) and Muth
(1969) (AMM) captures the fundamental trade-off in residential location choice between central-city oriented commuting
cost and housing consumption. More recently, studies on ‘‘wasteful commuting” have argued that real commuting time
and distances are much greater than those predicted by the simple AMM model, even if job decentralization is considered
(Hamilton and Röell, 1982; Hamilton, 1989; Small and Song, 1992). These recent studies show that several important factors
violate the AMMmodel’s assumption of the above trade-off between commuting cost and housing cost. Those factors include
the increasing number of two-worker households, job uncertainty and heterogeneity, as well as non-commuting trips to
shops, schools and other amenities. This means that planning or policies aiming at solely a ‘‘jobs-housing balance” will only
have a limited effect of mitigating congestion and pollution (Giuliano and Small, 1993). Researchers have advocated for the
importance of including the location and accessibility of urban amenities, such as schools, in residential locational choice and
travel mode choice models (Ewing et al., 2004; Ng, 2008; Wilson et al., 2010; Yang et al., 2012). In another stream of the
literature, referred to as Tiebout (1956) theory, urban residents are considered to ‘‘vote with their feet” for the provision
of local public goods. Oates (1969) and many subsequent studies further focus on demand for education services among
communities, and Rosen (1974)’s hedonic price technique is widely employed to estimate residents’ willingness-to-pay
for quality education (Black and Machin, 2011; Feng and Lu, 2013).

The recent studies have explored the effects of urban spatial patterns on commuting, and consequently, on environmental
quality. The expansion of urban space, the population density, the reliance on automobiles and the commuting distance may
affect urban environment (Anderson et al., 1996; Kahn and Mills, 2006; Chen et al., 2008). Different patterns of urban expan-
sion also have different congestion and environmental impacts (Camagni et al., 2002; Lohrey and Creutzig, 2016; Duranton
and Turner, 2016). On the one hand, numerous transportation and environmental science studies have analyzed the contri-
bution of automobiles on congestion and air pollution during the process of suburbanization (Liu et al., 2008; Zhao, 2010;
Walsh, 2014); on the other hand, some urban studies have investigated that the compactness of urban space may reduce
the energy consumption of vehicles and pollution (Glaeser and Kahn, 2010; Gaigné et al., 2012). The existing literature
mainly focuses on the effects of the accessibility of employment and infrastructure on commuting and environment
(Gordon et al., 1989; Peng, 1997; Cirilli and Veneri, 2014; Zhou et al., 2016). However, few literature has paid attention
to the accessibility of public services and how it affects aggregate congestion and pollution.

Several recent papers examine the congestion and pollution issues from another perspective – the impacts of the various
transport policies on road congestion and air quality, different empirical strategies are employed in previous studies (Beevers

4 Source: 4th Beijing Comprehensive Transportation Survey.
5 The estimation procedure is available upon request.
6 Traffic congestion index is published by Beijing Transportation Research Center (see details in Section 4).
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and Carslaw, 2005; Sun et al., 2014; Viard and Fu, 2015). A big challenge such studies face is the endogeneity between con-
gestion and air pollution when using the naïve OLS regression technique – for instance, people will drive more (to protect
themselves against the dirty air) or less (staying at home) on polluted days (Currie et al., 2009).

Building on the existing literature, this paper may contribute to urban congestion and environment studies in two
aspects. First, this is one of the first efforts empirically examine how the public service-housing separation affects aggregate
congestion and, consequently, air pollution. Second, using school holidays as repeated exogenous events and the instrument
variables, the endogeneity bias in the estimation of causal relationship between congestion and pollution is mitigated.

3. Institutional background

In contrast to the United States and many other developed nations, there is no real ‘‘property tax” in China, urbanites have
little say over local public budgeting. In addition, Chinese urbanites do not elect local governments. The provision of local
public goods is a centralized decision, mainly relying on local public finance, and it does not effectively respond to various
demands from households in decentralized neighborhoods.

As typical local public goods, primary and secondary schools are almost all constructed and maintained by the municipal
governments in Chinese cities, and more than 95% of students enter those public schools.7 According to China’s ‘‘school atten-
dance zone policy”, homeowners in a school’s ‘‘school attendance zone” are eligible to send their children to that school for a
standard, but quite low, fee. However, this does not mean households have the only choice to enroll their children in the nearby
school or must physically live in the corresponding school attendance zone. Many middle-class parents believe that studying at
a good school is crucial for their children to receive high-quality education and to own a bright future. Those parents (especially
the rich ones) compete for good schools and have various means to send their children to a good school even if they do not
reside in the corresponding school zone, such as paying a large school admission fee without owning a housing unit there
(Zhou and Lu, 2009), passing special admission tests organized by a good school, etc. (Zheng et al., 2015). Besides, some house-
holds purchase old or small housing units in good school zones but do not actually live there. Instead, they lease those units out
or just keep the units vacant, and they live in a larger house or somewhere with better living conditions outside the correspond-
ing school zone. Therefore, a considerable proportion of students live outside their school zones.

The municipal governments have not paid sufficient attention to the spatial mismatch of school quality and housing sup-
ply for a long time. Here we take Beijing as an example. Most of the public schools were built intensively before the 1980s,
and the high-quality ones were clustered in the inner city when the urban area was quite small. Further government funding
for public education could maintain the operation of the original good schools but could not finance building many new ones
(especially good ones) during the rapid urban expansion. Therefore, good schools in monocentric Beijing have not changed
significantly either in number or location, which does not match the ongoing suburbanization of urban households. More-
over, the restriction of land supply and new housing construction in Beijing downtown area further exacerbate the spatial
separation of good schools and households (Zheng and Kahn, 2008). As Fig. 1 shows, the density of all primary schools in
inner-city Beijing (downtown, the area within the 3rd ring road) is much higher than that in the outer city, and the
inner-outer ratio is higher than the population density ratio. Furthermore, the inner city, where 63.8% of all the highest-
quality primary schools (‘‘key” schools8) are located, enjoys a much higher density of these key schools than the outer city.

Due to the spatial mismatch between school quality and housing supply (both quantity and quality), many medium- and
high- income households choose to live where the housing supply is elastic and better living quality exists, while sending
their children to high-quality schools in other school zones. Yu and Liu (2011) investigate three key primary schools in Bei-
jing and report that 53.3% of students live outside the school zones (about 2 km radius of these schools). Thus, long-distance
trips to schools are quite common in Beijing, while taking a school bus is not a preferred way to transport students to
schools. Overall, fewer than 3% of students in Beijing take school buses.9 To ensure that their children have a safe and com-
fortable trip, many parents choose to send their children to school by private car.

4. Data and empirical strategy

4.1. Data

It is extremely difficult to obtain individual’s travel diary data in Chinese cities because such data is not publicly available.
Therefore, we could not use micro data to provide the direct evidence showing how the spatial mismatch of schools and
housing affects parents’ driving-to-school behaviors at different locations. Instead, our empirical study identifies the aggre-

7 The number of private schools are very limited. According to the Beijing Municipal Commission of Education, out of a total of 1160 primary schools in 2010,
only 24 were private schools. Those private schools mainly serve expats and households considering sending their children overseas for high school and/or
college.

8 Key schools, so-called excellent schools, are the highest-quality schools in Chinese cities. These schools have much better education quality and receive
much stronger public financial support than other good schools. According to statistics, roughly 5–10% of all schools in Beijing are key schools. The list of such
‘‘key schools” is released by Beijing Municipal Commission of Education, and is the local common knowledge to Beijing residents. However, the exact exam
scores and other quantitative school quality measures are not publicly available.

9 Source: 4th Beijing Comprehensive Transportation Survey.

282 M. Lu et al. / Transportation Research Part D 50 (2017) 280–291



gate effects of driving-to-school trips by analyzing the temporal variations of city-level traffic congestion and air pollution.
We examine whether traffic congestion and air pollution significantly change around the start/end dates of school holidays.
Here we introduce the key data sets we use in this study.

4.1.1. School calendar
The school calendar for primary and secondary schools is determined by Beijing Municipal Commission of Education, and

this decision is made at least one year prior to implementation, and the school calendar for primary schools is the same as
that for secondary schools in Beijing. The start and end dates of the winter and summer school holidays can be regarded as
repeated exogenous shocks to urban traffic and air pollution conditions. We collect school calendars from 2009 to 2011.10

We create two dummies: SH_SUMMER and SH_WINTER indicate whether a day is in the summer or winter school holidays
(yes = 1, no = 0), respectively. In this way, we separate all the days in our study period into treatment group (days in school hol-
idays) and control group (days NOT in school holidays). The biggest difference between these two groups is that driving-to-
school commuting does not exist in the treatment group.

4.1.2. Traffic congestion index
One key variable in our study is the traffic congestion index (TCI). This daily index is calculated by the Beijing Transporta-

tion Research Center (under the Beijing Municipal Commission of Transport), as the aggregate measure of motorized traffic
speed and road congestion in Beijing’s metropolitan area.11 TCI has already been standardized, with 0 referring to no conges-
tion at all and 1 referring to complete gridlock. An increase in TCI indicates that traffic flow becomes slower and congestion
becomes more serious. For the period between January 2009 and April 2011, we can only obtain the daily morning rush-
hour TCI data only for the workdays (the same dataset as that used in Sun et al. (2014)); for year 2013, we are able to obtain
the daily morning and evening TCI for workdays,12 the latter one is used for robustness check.

4.1.3. Air quality: PM10 and PM2.5

The third set of key variables is collected for air quality. We have two measures of particulate matter concentration. First,
we obtain the mean value of the PM10 concentration in Beijing’s metropolitan area for the period of 2009–2011. This PM10
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Fig. 1. Spatial distributions of primary schools and urban population. Data Source: Beijing Municipal Commission of Education; 2010 Beijing Population
Census database.

10 Source: http://www.bjedu.gov.cn/publish/portal0/tab153/.
11 TCI is calculated by using real-time speed and location of nearly 40 thousand moving cars weighted according to the traffic volumes of each road (Wen
et al., 2014; Anderson et al., 2015). See details on http://faculty.maxwell.syr.edu/jyinger/classes/PAI735/studentpapers/2014/Dong.pdf.
12 Unfortunately, we are unable to obtain the TCI data for the period of May 2011 to December 2012.
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data is converted from the daily air pollution index (API) released by the Beijing Municipal Environmental Protection
Bureau.13 Second, we collect the hourly PM2.5 concentration data for the same period from the United States Embassy in Beijing
(a single monitor), and convert the hourly data to daily mean concentration.14 Since some environmental studies show some
concerns over the quality of Chinese official air pollution data (Ghanem and Zhang, 2014), this PM2.5 data by US Embassy is used
for robustness checks.

4.1.4. Control variables
Beijing has implemented a ‘‘one day per week” driving restriction policy since October 2008. Under this policy, automo-

biles are not permitted to be on the road on any given workday according to the last digit of their license plates. Each work-
day has one of the five combinations of restricted numbers—1/6, 2/7, 3/8, 4/9, and 5/0. In China, most people dislike the
number ‘‘4” because it sounds like ‘‘death” in Chinese. Therefore fewer cars have the last digit ‘‘4” compared to the other
numbers. That means traffic congestion is much worse on workdays when cars having license numbers with a final digit
of ‘‘4” or ‘‘9” are not permitted to be on the road (Sun et al., 2014; Anderson et al., 2015). Therefore, the driving restriction
policy provides another repeated exogenous shock to traffic congestion and related air pollution. We use this as an additional
instrumental variable in some regressions.15

We also control for various daily weather conditions, including daily mean temperature (TEMP), daily mean humidity
(HUMI), daily mean wind speed (WIND), whether it rains (RAIN) or snows (SNOW). Such data comes from the TuTiempo.
net climate database.16

In the empirical analysis below, we mainly focus on the workdays from January 2009 to April 2011. This is the longest
continuous period for which we are able to match congestion and pollution variables. This period covers two summer school
holidays and three winter school holidays. Table 1 shows the definitions and summary statistics for all variables.

4.2. Patterns

The spatial separation between schools and households is expected to generate long-distance driving-to-school trips on
school days. To provide some intuition, Fig. 2 shows the temporal variation of weekly average TCI in our study period.17 We
can clearly see significant drops in TCI when school holidays start, indicating much less congestion. During school holidays,
almost no students attend primary or secondary schools in Beijing. Two-worker households are quite common in Chinese cities
and parents cannot take vacation on school holidays.18 Some robustness checks are used to rule out the impacts from the
absence of drive-to-work trips during the school holidays (see details in Section 5.3). Therefore, the TCI declines on school hol-
idays may mainly be attributed to the disappearance of driving-to-school trips. Such repeated drops in morning rush-hour TCI
inspire us to use school holiday start/end dates as repeated exogenous events to study the impact of driving-to-school trips on
traffic congestion. It should be noted that, weekly morning rush-hour TCI has a deeper drop around each of the winter school
holidays than each of the summer school holidays. The possible reason is that the one-month winter school holiday covers the
seven-day Chinese Spring Festival, and many Beijing urbanites go back to their original hometowns or leave the city for tours
around this national holiday. Therefore, in the empirical analysis below, although the regression results are reported for both
summer and winter school holidays, we rely more on the results for summer school holidays. In a scientific study, Yang et al.
(2016) use GPS record of three selected routes and calculate the emission inventories of many pollutants, and their results show
significant differences of average speed and air pollution between school days (September–October, 2013) and summer school
holidays (July–August, 2013) in Beijing. We will further identify the causal mechanisms behind the patterns discussed above –
the ‘‘chain” channel from driving-to-school trips to congestion and then to pollution.

4.3. Empirical strategy

We employ the two-stage least squares (2SLS) regression method as our empirical strategy. In the first stage of 2SLS, we
regress traffic congestion index on school holiday variable(s) and other control variables. As the driving-to-school trips only
exist on school days but disappear in the school holidays, the school calendar is used to investigate the link between driving-
to-school and traffic congestion in this stage. The estimation with long time period is to show the different congestion levels
between school holidays and non-school-holiday workdays. However, we doubt that seasonality and many unobserved fac-
tors (such as gas price, GDP and population) may co-vary with (but are not related to) school holiday schedule, which may
bring empirical challenge to identify the pure effect of driving-to-school trips. Therefore, we then restrict the study period to
narrow time windows (see Fig. 3), such as 15 days (or even 7 days) on either side of the school holiday start/end dates.

13 Andrews (2008) presents the conversion formula. API data source: http://www.bjepb.gov.cn/. Beijing’s daily API data is not available for the year of 2013.
14 Some recent studies suggest using two different data sources for robustness checks (Chen et al., 2012). However, the limitation of PM2.5 data is that it is
collected from a single monitor, and this could also result in estimation bias.
15 We will present the Sargan over-identification test of all instrument variables in some 2SLS regression results.
16 Weather data come from http://www.tutiempo.net/en/Climate/Beijing/545110.htm.
17 We convert workday TCI to weekly average TCI here.
18 See some related media reports: http://www.chinadaily.com.cn/opinion/2016–08/01/content_26290021.htm; http://www.globaltimes.cn/content/869051.
shtml. Some parents even have to take their children to the work.
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Unobserved factors tend to keep constant in the narrow time windows.19 By doing so we can mitigate the noises brought by
these factors. We also separate the narrow time windows into those around summer, and those around winter school holidays.
Some robustness checks and discussions are provided to confirm our empirical findings in Section 5.3.

In the second stage, we regress the daily PM10 concentration on TCI and controls in an air pollution equation. The novel
part at this stage is that we link it with the first stage so that we actually run a two-stage regression where school holiday
dummies serve as instrumental variables (IVs) for traffic congestion. This allows us to mitigate the endogeneity problem and
obtain an accurate estimation of the causal relationship from drive-to-school trips to the increase in PM10 concentration.20 It
should be noted that, our instrumental variable strategy is only valid if the school holiday variables pass the ‘‘exclusion” test –
they should only influence air pollution through the traffic congestion channel (in other words, they should not be correlated
with air pollution through any other channel). We justify this in three ways. First, the school calendar is a centralized decision
made at least one year before its implementation. Second, the one-month or even two-week time windows help us exclude the
omitted variable bias and reduce the possible endogeneity.21 Third, we further conduct several robustness checks in Section 5.3
to address the concerns of missing variables and confirm our major findings.

Table 1
Variable definitions and summary statistics.

Variable Definition Period Obs. Mean Std. Dev.

TCI Daily traffic congestion index in morning rush hours 2009–2011.4 554 0.499 0.143
2013 239 0.493 0.145

TCI_E Daily traffic congestion index in evening rush hours 2013 239 0.602 0.153
PM10 Daily mean PM10 concentration (in mg/m3) 2009–2011 554 0.125 0.081
PM2.5 Daily mean PM2.5 concentration (in mg/m3) 2009–2011 482 0.102 0.077
SH_WINTER 1 = winter school holidays, 0 = otherwise 2009–2011 554 0.081 0.273
SH_SUMMER 1 = summer school holidays, 0 = otherwise 2009–2011 554 0.130 0.337
TEMP Daily mean temperature ("C) 2009–2011 554 11.303 11.839
HUMI Daily mean humidity (%) 2009–2011 554 49.545 20.847
WIND Daily mean wind speed (m/s) 2009–2011 554 11.377 5.771
RAIN 1 = rainy day, 0 = otherwise 2009–2011 554 0.217 0.412
SNOW 1 = snowy day, 0 = otherwise 2009–2011 554 0.025 0.157
NUM49 1 = driving restriction (no driving during the day if plate number ends with 4 or 9),

0 = otherwise
2009–2011 554 0.200 0.401

Note: Some variables have missing values. We drop the daily PM2.5 concentration observations with less than 50% valid hourly readings in the 24-h day.
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Fig. 2. Weekly traffic congestion index (morning rush hours). Source: Beijing Transportation Research Center.

19 For instance, according to monthly production statistics for Beijing, the month-on-month growth rates of industrial output in July and August are quite
comparable to those for other months, with no significant sign of a ‘‘slowdown”. Source: http://www.bjstats.gov.cn/sjfb/bssj/jdsj/2009/. As the gas price is set
by the government (does not vary frequently) in China, the price keeps constant in the narrow time windows.
20 We interviewed some parents of school-aged children, most said they did not want their children to miss school even when the air pollution is worse. They
do not worry much about health consequences for their children when their children are at school, the reason is that students are more likely to stay in the
classroom on days when the air quality is worse.
21 According to Beijing city government’s public information, there are no traffic and environmental policy changes in the narrow time windows.
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5. Model specification and empirical results

5.1. Model specification

As mentioned above, we employ 2SLS regression to better illustrate the chain of ‘‘driving-to-school trips – traffic conges-
tion – air pollution”. The detailed specifications for the first-stage traffic congestion equation and the second-stage air pol-
lution equation are shown in Eqs. (1) and (2), respectively.

1st stage : TCIt
¼ a0 þ a1 # SH WINTERt þ a2 # SH SUMMERt þ a3 # NUM49t þ a4 #Wt þ a5 # Dt þ a5 # Yt þ f ðTÞ þ et ð1Þ

2nd stage : PM10t ðor PM2:5tÞ ¼ b0 þ b1 # TCIt þ b2 #Wt þ b3 # Dt þ b4 # Yt þ f ðTÞ þ lt ð2Þ

where the dependent variables are daily traffic congestion index (TCIt) and air pollution indicators (PM10t or PM2.5t) on day t,
measuring the negative traffic and pollution externalities respectively. Dummy variable SH_WINTERt or SH_SUMMERt turns
on when the day is during the winter or summer school holiday, respectively. They capture drops in traffic congestion due to
the reduction of driving-to-school trips during school holidays. Dummy variable NUM49t captures the worse congestion on
the days with driving restriction of 4/9.

VectorWt controls for short-term fluctuations caused by various weather factors. Vector Dt controls for day-of-week fixed
effects on traffic congestion and air pollution. Vector Yt of year dummies captures the yearly difference. The polynomial time
trend f(T) captures any pre-existing trend in congestion and pollution for a long time period, T is set as a continuous time
trend within each year.22 Thus, the holiday dummies may better capture the discontinuity effects of the school holidays. In
the regressions of narrow time windows where no continuous time trend is assumed, we do not include either the polynomial
time trend or the year fixed effects. The error terms in two stages are denoted by et and lt, respectively.

We expect that the coefficient of the school holiday dummy (either a1 or a2) in the first-stage equation is significantly
negative, it means the long-distance driving-to-school trips indeed impose a burden on aggregate traffic congestion. Condi-
tional on this, if the coefficient of TCI (b1) in the second-stage equation is significantly positive, we can say that either winter
or summer school holiday has an environmental consequence through the channel of removing driving-to-school trips from
the road network.

5.2. Empirical results

5.2.1. Empirical results of the traffic congestion equation
We firstly presents the regression results for the first-stage traffic congestion equation, showing the link between driving-

to-school and congestion in Table 2. Column (1) reports the regression results for the whole sample (all workdays from Jan-
uary 2009 to April 2011). The 2nd -order polynomial time trend and yearly fixed effects are included. Columns (2) to (4) pre-

15 days 
(or 7 days)

15 days 
(or 7 days)

15 days 
(or 7 days)

Outside school holiday Within school holiday Outside school holiday

Start date End date

One-month time window
(or two-week time window)

Control group
Treatment group

15 days 
(or 7 days)

One-month time window
(or two-week time window)

Fig. 3. Narrow time window estimation.

22 The first day of the summer school holiday takes the value of 0. For instance, the first day of summer school holidays in 2009 is July 11, so the value of T on
this day is 0, and its values on January 1st and December 31st are &191, and +173, respectively. For the year 2010, the first day of the summer school holiday is
July 13, so the value of T on this day is 0, and its value on January 1st is &193. Our estimation results are not influenced by whichever day we set T = 0.
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sent the regression results with the one-month time window sample (15 days on either side of the school holiday start/end
dates), and columns (5) to (7) present the regression results for the two-week time window sample (7 days on either side of
the school holiday start/end dates).

Generally, the coefficients of the school holiday dummies are significantly negative, indicating that traffic congestion is
significantly reduced during school holidays. For the regressions of the whole sample and one-month sample (columns (1) to
(4)), the coefficient of SH_WINTER has a larger absolute value than the coefficient of SH_SUMMER. This is because the winter
school holiday includes the Chinese Spring Festival, as mentioned before. In addition, the 4/9 effect of driving restriction still
holds but its coefficient loses significance when the sample size becomes smaller.

Since the omitted variables are more likely to be unchanged in narrower time windows, the two-week time window esti-
mates are more reliable but the sample size becomes much smaller. Columns (5) to (7) reveal that TCI in school-holiday
workdays is about 0.12 (about 20% of the mean value) lower than that for non-school-holiday workdays.23 Given the
non–linear relationship between traffic flow and speed, when the road network enters congestion status, the increase in the
congestion level is often faster than the increase in the number of motor vehicles on the road network. Thus, it seems reasonable
that these driving-to-school trips cause about 20% of aggregate congestion in our estimation.

5.2.2. Empirical results of the air quality equation
Table 3 reports the traditional ordinary least squares (OLS) and the two-stage least squares (2SLS) regression results for

the air quality equation for the whole sample and the narrow time windows (one-month sample and two-week sample).
In column (1) with OLS estimation, the coefficient of TCI is negative but insignificant. This may be due to the endogeneity

between traffic congestion and pollution, because on polluting days, people may choose not to drive. We then turn to the
2SLS regressions in the remaining columns. The regression of the traffic congestion equation serves as the first stage, and
the instrumental variables include SH_SUMMER, SH_WINTER and NUM49. The first-stage regressions for columns (2) to (5)
in this table are reported in columns (1), (3), (4) and (6) in Table 2, respectively. The coefficient of TCI in column (2) becomes
positive.24 The sign inversion for this TCI variable from the OLS to the 2SLS regression may indicate that the endogeneity issue
(reverse causality) does exist. We further construct sub-samples which include 15 days on either side of school holiday start/
end dates (one-month time window). Columns (3) and (4) cover the narrow time windows of winter holiday and summer hol-
iday, respectively. The coefficient of TCI is significantly positive in column (4), but not in column (3). Some other possible chan-
nels such as coal-based winter heating and firework displays may affect coefficient significance in the second stage of the winter
holiday sample.

We further shrink the sample size in column (5) by only focusing on the 7 days on either side of the summer school hol-
iday start/end dates. For this narrower time window sample, the coefficient of SH_SUMMER becomes smaller but still signif-
icant. The Sargan statistic shows that the instrument variables pass the test of over-identification. To further examine
whether the school holiday alone brings enough exogenous variation to cause traffic congestion and hence to cause the
air pollution change, in column (6), we drop the NUM49 and keep SH_SUMMER as our sole IV for the first stage (thus the
degree of freedom can increase). Compared with column (5), the coefficient of TCI is still significant and the F value in the
weak IV test also becomes larger. It is acceptable considering such a small sample size of two-week time windows. This
means that the summer school holidays generate sufficient exogenous variations in TCI to induce the change in PM10 con-
centration. The negative coefficient of TCI in each of these two columns implies that the reduction in TCI observed during
summer holidays leads to a significant decrease in PM10 concentration.25

5.3. Robustness checks

As the first set of robustness checks, we use other time windows outside school holidays as a placebo test. We set two
hypothetical one-month ‘‘school holidays” – the first one starts on November 1 and ends on November 30, and the second
one starts on May 20 and ends on June 20. These two periods are in fact in the middle of the fall and spring semesters. We
replace the school holiday dummies in Eq. (2) with SH_FALL (1 = within the hypothetical fall school holiday) and SH_SPRING
(1 = within the hypothetical spring school holiday). Columns (1) to (4) in Table 4 show the regression results for these two-
week time window samples (7 days on either side of the hypothetical school holiday start/end dates). The coefficients of
SH_FALL and SH_SPRING are insignificant in columns (1) and (3), indicating that there is no difference in traffic congestion
around the start/end dates of the time windows we examine. The second-stage regressions in columns (2) and (4) report
insignificant effects of TCI on PM10.

Another major concern is the reduction of parents’ drive-to-work trips may also exist in school holidays. In other words, if
parents take vacation and stay with their children during school holidays, we will observe the decline in traffic congestion.
As the second set of robustness checks, we compare the variation of morning and evening rush-hour TCI around the school

23 In other words, the average speed of motor vehicle on a typical non-school-holiday workday is 0.76–0.85 of that on a workday in summer school holiday.
24 The regression in column (2) is the only one where the instrument variables do not pass the over-identification test. The instrument variables pass the over-
identification test in all the remaining regressions for narrow time windows.
25 To prove the statistical exogeneity of IVs, we predict the residual for each first-stage regression in Table 3, and include the residual as an explanatory
variable in the second-stage equation with other controls. The coefficient of this variable is not significant in each regression.

M. Lu et al. / Transportation Research Part D 50 (2017) 280–291 287



holiday start/end dates in 2013.26 Given primary and secondary school students always leave school much earlier (around 3–4
PM) before the evening rush hours (around 6–7 PM), this helps us to address the above concern. Columns (1) and (2) in Table 5
show that there is no significant drop in the evening rush-hour TCI during summer school holidays, but the drop for winter
school holidays is significant. This can also be explained by the fact that people take vacation and go back to their hometown
around the Spring Festival, but few people change their commute behaviors (and take vacation) around summer school holi-
days. To make it more intuitive, we replace the dependent variable with the TCI gap between morning and evening rush hours

Table 2
Regression results of the traffic congestion equation (the first stage).

Dependent variable:
TCI

Whole period One-month time window Two-week time window

Summer and winter
holidays

Summer and winter
holidays

Winter
holiday

Summer
holiday

Winter
holiday

Summer
holiday

(1) (2) (3) (4) (5) (6)

SH_WINTER &0.213*** &0.199*** &0.183*** &0.0763**

(0.0173) (0.0217) (0.0219) (0.0310)

SH_SUMMER &0.138*** &0.148*** &0.124*** &0.118***

(0.0151) (0.0257) (0.0240) (0.0355)

NUM49 0.0960*** 0.0686*** 0.0709** 0.0855*** 0.0534 0.0692
(0.0103) (0.0206) (0.0342) (0.0278) (0.0459) (0.0487)

Constant 0.628*** 0.317*** 0.354*** 1.148*** 0.233*** 1.329***

(0.0386) (0.0510) (0.0588) (0.154) (0.0750) (0.303)

Day-of-week fixed
effects

Yes Yes Yes Yes Yes Yes

Weather variables RAIN, SNOW, TEMP, HUMI, WIND

Obs. 554 197 110 87 55 40
R2 0.553 0.585 0.550 0.633 0.590 0.609

Note: Standard errors in parentheses; * p < 0.10. One-month time window covers 15 days on either side of the school holiday start/end dates. Two-week
month time window covers 7 days on either side of the school holiday start/end dates (see Fig. 3). Day-of-week fixed effects include four weekday dummies
(Monday is the default). The 2nd–order polynomial time trend and yearly fixed effects are controlled in column (1).
** p < 0.05.

*** p < 0.01.

Table 3
Regression results of air quality (PM10) equation (the second stage).

Dependent variable:
PM10

Whole period One-month time window Two-week time window

Summer and winter holidays Winter holiday Summer holiday Summer holiday

(1) (2) (3) (4) (5) (6)
OLS 2SLS 2SLS 2SLS 2SLS 2SLS

TCI &0.00229 0.140*** 0.0317 0.198*** 0.144* 0.159*

(0.0255) (0.0422) (0.0641) (0.0758) (0.0826) (0.0923)

Constant 0.0996*** 0.0129 0.0437 &0.322** &0.188 &0.215
(0.0340) (0.0392) (0.0339) (0.132) (0.167) (0.183)

Day-of-week fixed
effects

Yes Yes Yes Yes Yes Yes

Weather variables RAIN, SNOW, TEMP, HUMI, WIND

Instrumental variables – SH_WINTER, SH_SUMMER
NUM49

SH_WINTER,
NUM49

SH_SUMMER,
NUM49

SH_SUMMER,
NUM49

SH_SUMMER

Weak IV (F-test) – 108.478 36.934 18.256 6.284 10.200

Sargan statistic – 16.555 0.076 2.976 0.189 –

Obs. 554 554 110 87 40 40
R2 0.222 0.177 0.436 0.262 0.405 0.377

Note: Standard errors in parentheses, One-month time window covers 15 days on either side of the school holiday start/end dates. Two-week month time
window covers 7 days on either side of the school holiday start/end dates (see Fig. 3). The 2nd–order polynomial time trend and yearly fixed effects are
controlled in columns (1) and (2).

* p < 0.10.
** p < 0.05.

*** p < 0.01.

26 The evening rush-hour TCI data is only available for the year of 2013.
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(DTCI) in column (3). The coefficient of SH_SUMMER shows that TCI decreases by 0.12 in summer school holidays, which is con-
sistent with our 2SLS regression result.27 We also use online dining-out data to test if people have less frequent leisure activities
and non-commute trips during the summer holidays. The results show that the amounts of dining-out have no significant dif-
ference on either side of the school holiday start/end dates. The results are available upon request.

As the third set of robustness checks, we replace the dependent variable in the second stage with PM2.5 as well as the
logarithmic form of PM10. The signs of our key variables are the same with those in Table 3, and the significance levels
are also similar. These results are available upon request.

Although we exclude most unobserved variables to support the existence of the ‘‘chain” channel in our 2SLS regressions
for the narrow time windows and above morning-evening comparison to improve the accuracy of our estimates, we
acknowledge that some other unobserved variables may not keep constant in our narrow time windows, which will bring
possible bias.28 Future research is encouraged to use more disaggregated congestion and pollution data (rather than aggregated
city-level data) to more accurately estimate the sizes of those effects and investigate the spatial difference.

6. Conclusion

To ensure their children’s bright futures, Chinese parents compete for high-quality education by sending their children to
high-quality primary and secondary schools. However, in a Chinese mega-city like Beijing, the historical dependency in the
location of schools (especially good schools), the centralized public goods provision and the constrained housing supply in
the downtown jointly result in the spatial separation between where people live and where their children attend schools.
Without efficient school bus system, this ‘‘schools - homes” spatial separation causes the common phenomenon that a large
amount of parents choose to drive private cars over a long distance to deliver their children to schools. Our estimates shows
that 15% of morning rush-hour trips consist of such driving-to-school trips.

In this paper, school holidays (especially the summer ones) are used as exogenous repeated shocks to first estimate how
much such trips affect Beijing’s aggregate traffic congestion. We then employ 2SLS approach to examine the causal effect
from the congestion to air pollution. Both the narrow time window (one week on either side of the school holiday start/
end dates) and instrumental variable strategy are used to exclude most unobserved variables and mitigate the endogeneity
bias. The empirical results show that, all else being equal, workdays in school holidays without such driving-to-school trips
enjoy a 20% lower morning rush-hour congestion index (TCI) than non-school-holiday workdays. Such sharp drop in TCI
observed during summer school holidays leads to a significant decrease in PM10 concentration. Some robustness checks con-
firm our key findings. We acknowledge that our estimate is constrained by city-level aggregated data and small sample size,
and hence can only be regarded as a first attempt to quantify how the spatial separation between schools and households
leads to this negative environmental externality through the transportation channel. Future research is encouraged to imple-
ment a specific and large-scale survey to show the detailed patterns and distribution of ‘‘schools – homes” spatial mismatch

Table 4
Placebo tests for 2SLS regressions.

Period Hypothetical FALL holiday Hypothetical SPRING holiday

Dependent variable TCI PM10 TCI PM10
(1) (2) (3) (4)

SH_FALL 0.00648
(0.0261)

SH_SPRING 0.0127
(0.0252)

TCI &0.0776 0.517
(1.930) (1.504)

Constant 0.677*** 0.0832 0.919*** &0.532
(0.0942) (1.116) (0.174) (1.484)

Day-of-week fixed effects Yes Yes Yes Yes

Weather variables RAIN, SNOW, TEMP, HUMI, WIND

Instrumental variables – SH_FALL – SH_SPRING

Obs. 40 40 37 37
R2 0.639 0.657 0.614 .

Note: Standard errors in parentheses; * p < 0.10, ** p < 0.05. NUM49 is controlled in columns (1) and (3) but not reported.
*** p < 0.01.

27 Data source: http://www.dianping.com.
28 For instance, driving children to school is more or less likely to happen at the very start/end of the semester. Moreover, teachers and administrative staffs
are more likely to commute home in evening rush hours rather than morning rush hours, the possible ‘‘overlap” effect is largely excluded in morning-evening
comparison.
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within the city. More individual travel behavior data and spatially disaggregate congestion measures are helpful to further
investigate the link between school driving and traffic congestion at each location.

Given the above empirical findings, it is expected that reducing the spatial mismatch of good schools and homes will mit-
igate traffic congestion and air pollution. In recent years, Beijing municipal government has sought many solutions to this
‘‘schools - homes” spatial separation problem, such as relocating good schools (or establishing new ones) in suburban areas
to match the ongoing residential suburbanization, periodically adjusting the good schools’ corresponding zones, and allow-
ing private-public partnerships in good school provisions and school bus services. Based on potential disaggregate data,
future research will yield several important implications to empirically examine the effects of school supply, urban planning
and management strategies on congestion and air pollution.
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